

Short Research Article

Radiolabelling of thymine with ^{99m}Tc. Preliminary results regarding the stability and biospecificity of [^{99m}Tc]thymine[†]

DIANA CHIPER*, CORINA A. SIMION, VIRGINIA BORZA and NICOLAE NEGOITA

'Horia Hulubei' National Institute for Physics and Nuclear Engineering, 407 Atomistilor, Magurele, judet Ilfov, P.O. Box MG 6, postal code 077125, Bucharest-Magurele, Romania

Received 26 April 2007; Accepted 27 April 2007

Keywords: technetium-99m; thymine; radiolabelling

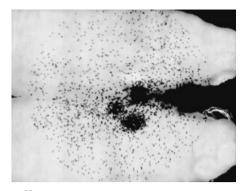
Introduction

This paper reports the radiolabelling of thymine with ^{99m}Tc, as a potential radiopharmaceutical for breast tumor radiodiagnosis in nuclear medicine.¹ We used stannous chloride as a reducing agent in accordance with the requirements of the European Pharmacopeia. Several ratios between thymine and stannous chloride were utilized. In the labelling process, we used a concentration of 1, 2 and 4 mg/ml of thymine (Merck), pH = 5.5, and various stannous chloride concentrations (0.1, 0.25, 0.5 mg/ml) as $SnCl_2 \cdot 2H_2O$ (Merck) in 0.05 N hydrochloric acid. The pH was adjusted with 1 N sodium hydroxide solution to 4.5-5.5, the optimal value for the radiolabelling process. All the preparations of the mixed solutions were effected under an inert gas (nitrogen). After stabilization, the solution obtained was divided into 1 ml portions for lyophilization. The lyophilized samples were radiolabelled by injection of Na^{99m}TcO₄ solution (2 ml, 2–10 mCi) eluted from a ⁹⁹Mo/^{99m}Tc generator. The quality control of the [^{99m}Tc]thymine was monitored by paper and thin-layer chromatography methods. The results show high radiochemical purity (>90%) in accordance with a high radiolabelling yield. The biological properties of the [99mTc]thymine were evaluated using animal models.

Results and discussion

For evaluation of the radiochemical purity and radiolabelling yield we used the following solvent systems: 0.9% NaCl solution, acetone and isopropyl alcohol/ 0.1 N hydrochloric acid/water (4:2:4 v/v) for the differentiation between different free and bound ^{99m}Tc species.² From Table 1 it can be seen that the radiochemical purity and radiolabelling yield are dependent upon both the mass ratios used and the Na^{99m}TcO₄ radioactivity employed in the radiolabelling process.^{3,4} The radiochemical purity was calculated by the substraction method. For the radiobiological investigation, we used the samples with composition: thymine:stannous chloride (4:1) mass ratio, labelled with 2.5 mCi of Na^{99m}TcO₄. The preliminary results obtained showed that it is possible to obtain [^{99m}Tc]thymine, in high radiochemical purity (90-98%), by employing the optimum composition: thymine:stannous chloride (4:1) mass ratio.

The biospecificity of the uptake of [^{99m}Tc]thymine was evaluated via an animal model using a scintigraphy


Table 1	Radiochemical	purity	v of	[^{99m} Tc]th	ymine comp	lex
---------	---------------	--------	------	------------------------	------------	-----

			· · · I ·	
Thymine (mg)	Stannous chloride (mg)	Na ^{99m} TcO ₄ radioactivity (mCi)	Radiochemical purity (%)	
1	1	5	91.22	
1	1	5	89.88	
1	0.5	5	90.31	
1	0.5	5	92.74	
1	0.5	2.5	98.23	
1	0.25	5	97.12	
1	0.25	5	97.35	
2	0.5	8	97.44	
2	0.5	2.5	98.15	
4	0.5	8	69.54	
4	0.5	2.5	68.58	

^{*}Correspondence to: Diana Chiper, 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, 407 Atomistilor, Magurele, judet Ilfov, P.O. Box MG 6, postal code 077125, Bucharest-Magurele, Romania. E-mail: diana_chiper@yahoo.com

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

Figure 1 [99m Tc]Thymine uptake by the tumor of the standard female rat (0.8 mCi [99m Tc]thymine in 0.2 ml injected dose).

method. The scintigraphy was carried out within 60 min of the i.v. injection time (Figure 1). The imaging obtained shows the high uptake of $[^{99m}$ Tc]thymine at the tumor after 1 h post-i.v. injection.

REFERENCES

- 1. Gutfilen B, Rodrigues E, Fonseca LM, Soraggi R, Goncalves SA, Bernardo-Filho M. *Proceedings* of the Sixth International Symposium on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds, Pennsylvania, vol. I:36, 1997.
- Gutfilen B, Ribeiro BA, Bernardo-Filho M. In Synthesis and Applications of Isotopically Labeled Compounds, Allen J, Voges R (eds), vol. 1. Wiley LTDA: New York, 1995; 395–398.
- Hladik WB, Saha GB, Study KT (eds). Essentials of Nuclear Medicine Sciences. Williams and Wilkins: Baltimore, London, 1999; 439.
- 4. Ribeiro BA, Boarim RC, Gutfilen B, Correia TG, Penque E, Martins EF, Bernardo-Filho M. Book of Abstracts, XXIV Congresso Brasileiro de Radiologia, Rio de Janeiro, 1993; 55.